Место для рекламы
  1. Категории

Задача математика олимпиада

8 публикаций 0 закладок

Ни один ИИ не взял эту простую задачку

Ни один ИИ не взял эту простую задачку!
Определить длину якорной цепи, составленной из 685 звеньев.
Каждое звено имеет следующие размеры: диаметр просвета равен 8 см, а толщина стержня, из которого сделано звено, равна 15 мм.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  23 окт 2025

Существует ли функция, ...?

а) Привести пример функции, у которой все рациональные числа, отличные от нуля, являются ее периодом, а иррациональные числа периодом не являются.

б) Существует ли функция, для которой каждое иррациональное число является ее периодом, но не существует рационального числа, являющегося ее периодом?

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  26 фев 2023

Вчрптък157

Вчрптък157 Натуральное число, превышающее 1, назовём екатериноекатерининским, если оно делится как на число своих делителей, так и на обоих его соседей по натуральному ряду.

Докажите, что екатериноекатерининских чисел бесконечно много.

Эта задача имеет красивое решение в одну строчку, постарайтесь до него додуматься.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  16 ноя 2021

Очень красивая олимпиадная задача

а) Докажите, что для любого целого неотрицательного n найдутся три попарно различных натуральных числа, сумма которых даёт остаток n при делении на каждое из слагаемых.

(Татьяна Юрьевна Березюк.)

б) Докажите, что для любого натурального m (большего или равного 3) и любого целого неотрицательного n найдутся m попарно различных натуральных чисел, сумма которых даёт остаток n при делении на каждое из слагаемых.

(По мотивам задачи Татьяны Юрьевны Березюк.)

#кружок6_класса #делимость_и_остатки #конструкции #примеры_и_контрпримеры #итерации

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  07 ноя 2022

Докажите, что сумма попарных произведений девяти последовательных целых чисел не может быть точной степенью целого числа, если эта степень выше первой.

Опубликовал  пиктограмма мужчиныЯн Дененберг 2  05 апр 2025
Расставьте в вершинах семиугольника числа так, чтобы суммы трёх идущих подряд чисел соответственно равнялись бы числам 9, 7, 10, 13, 12, 10, 5.

Старшеклассники, разумеется, станут решать эту задачу через икс. Но задачка-то для 4-го класса! Попробуйте найти детский способ её решения.
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  25 окт 2025

Ошибка в журнале "Квант"? Или моя ошибка?

В 7-м номере журнала «Квант» 1989 года предлагалась следующая задача:

Когда Петя разбил свою копилку, в ней оказалось 16 медных монет. Он разложил их на 4 кучки по 4 монеты так, чтобы денег в кучках было поровну. Тут он заметил, что наборы монет во всех кучках разные. Сколько денег было в копилке?

В следующем номере журнала был дан ответ:

-------------------------------------------------------------

Цитата:

«Таких наборов монет два:

(2, 2, 3, 3),
(1, 3, 3, 3),
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  29 июл 2025
Пятеро октябрят — Паша, Даша, Саша, Маша и Наташа — построились в шеренгу, держа в руках 37 флажков. В каком порядке стоят ребята неизвестно. Октябрята, стоящие справа от Наташи, держат 14 флажков, справа от Саши — 32 флажка, справа от Паши — 20 флажков, справа от Маши — 8 флажков. Сколько флажков у каждого из ребят?
Опубликовал  пиктограмма мужчиныЯн Дененберг 2  27 авг 2025